还在迷茫嘛?这一篇干货整理,计算机视觉学习路线

写在前面

整理了走CV这条路的一些干货,有我学习过的,也有我没学习过的,打算后面遇到了好的资源或者资料就更新过来,方便自己保存后面看,也可以提供给其他人一同学习,资料连接我都放出来了,数学那部分我把pdf放在云盘里面了,更详细可以去我的GitHub上看。

单纯就是想分享技术博文,还想说一句就是,如果觉得有用,请点个关注、给个赞吧,也算对我来说是个宽慰,毕竟也得掉不少头发,嘿嘿嘿

数学–高等数学

  • 数学基础:高等数学
  • 高等数学知识集合
  • 高等数学 第七版(上册)
  • 高等数学 第七版(下册)

数学–线性代数

  • 数学基础:线性代数
  • 线性代数课件(完整版)同济大学
  • 矩阵分析引论罗家洪(第四版)

数学–概率论

  • 数学基础:概率论与数理统计
  • 概率论与数理统计公式整理(超全免费版)PDF
  • 概率论与数理统计讲义
  • 概率论与数理统计课件(PPT)

数学–凸优化

  • 凸优化_Boyd_王书宁译
  • ConvexOptimization_Boyd_slides
  • Convex Optimization_Solutions
  • 凸优化知识点整理
    • Ch1-2 引言
    • Ch3 凸函数
    • Ch4 凸优化问题
    • Ch5 对偶问题
    • Ch6 逼近与拟合
    • Ch7 统计估计
    • Ch8 几何问题
    • Ch9 无约束优化
    • Ch10 等式约束优化
    • Ch11 内点法
    • 凸优化重点整理&总结

机器学习基础–数学过渡

  • 统计学习方法
  • 周志华-机器学习(西瓜书) 书中公式推导
  • 斯坦福大学机器学习数学基础

深度学习

  • 深度学习入门300页ppt
  • 神经网络与深度学习
  • 神经网络与深度学习 - 复旦邱锡鹏
  • 《深度学习》 – 花书
  • 《深度学习 500 问》

计算机视觉

  • 《Computer Vision:Models, Learning and Inference》
  • 《Computer Vision:Algorithms and Applications》
  • 《OpenCV3编程入门》

理论实战

  • 《Scikit-Learn 与 TensorFlow 机器学习实用指南》

网络课程

机器学习

这绝对是机器学习入门的首选课程,没有之一!即便你没有扎实的机器学习所需的扎实的概率论、线性代数等数学基础,也能轻松上手这门机器学习入门课,并体会到机器学习的无穷趣味。网易云课堂搬运了这门课,并由黄海广等人翻译了中文字幕。该课程有中文笔记以及作业代码。

吴恩达在斯坦福教授的机器学习课程 CS229 与 吴恩达在 Coursera 上的《Machine Learning》相似,但是有更多的数学要求和公式的推导,难度稍难一些。该课程对机器学习和统计模式识别进行了广泛的介绍。

台湾大学林轩田老师的《机器学习基石》课程由浅入深、内容全面,基本涵盖了机器学习领域的很多方面。其作为机器学习的入门和进阶资料非常适合。而且林老师的教学风格也很幽默风趣,总让读者在轻松愉快的氛围中掌握知识。这门课比 Ng 的《Machine Learning》稍难一些,侧重于机器学习理论知识。

《机器学习技法》课程是《机器学习基石》的进阶课程。主要介绍了机器学习领域经典的一些算法,包括支持向量机、决策树、随机森林、神经网络等等。难度要略高于《机器学习基石》,具有很强的实用性。

深度学习

在吴恩达开设了机器学习课程之后,发布的《Deep Learning》课程也备受好评,吴恩达老师的课程最大的特点就是将知识循序渐进的传授给你,是入门学习不可多得良好视频资料。整个专题共包括五门课程:01.神经网络和深度学习;02.改善深层神经网络-超参数调试、正则化以及优化;03.结构化机器学习项目;04.卷积神经网络;05.序列模型。

说到深度学习的公开课,与吴恩达《Deep Learning》并驾齐驱的另一门公开课便是由 Fast.ai 出品的《程序员深度学习实战》。这门课最大的特点便是“自上而下”而不是“自下而上”,是绝佳的通过实战学习深度学习的课程。

强化学习

与吴恩达的课程对于机器学习和深度学习初学者的意义相同,David Silver 的这门课程绝对是大多数人学习强化学习必选的课程。课程从浅到深,把强化学习的内容娓娓道来,极其详尽。不过由于强化学习本身的难度,听讲这门课还是有一定的门槛,建议还是在大致了解这个领域之后观看该视频学习效果更佳,更容易找到学习的重点。

David Silver 的课程虽然内容详尽,但前沿的很多内容都没有被包括在内,这时,台大李宏毅的《深度强化学习》就是学习前沿动态的不二之选。

计算机视觉

  • Stanford CS223B

比较适合基础,适合刚刚入门的同学,跟深度学习的结合相对来说会少一点,不会整门课讲深度学习,而是主要讲计算机视觉,方方面面都会讲到

论文

目标检测(Object Detection)是深度学习 CV 领域的一个核心研究领域和重要分支。纵观 2013 年到 2019 年,从最早的 R-CNN、Fast R-CNN 到后来的 YOLO v2、YOLO v3 再到今年的 M2Det,新模型层出不穷,性能也越来越好!

参考文档及工具

比赛是提升自己机器学习实战能力的最有效的方式,首选 Kaggle 比赛。

Scikit-Learn 作为机器学习一个非常全面的库,是一份不可多得的实战编程手册。

这款神器只要截个图,公式会自动转化为 LaTex 表达式,我们只需要简单地修改就行了。

Zotero作为一款协助科研工作者收集、管理以及引用研究资源的免费软件,如今已被广泛使用。此篇使用说明主要分享引用研究资源功能,其中研究资源可以包括期刊、书籍等各类文献和网页、图片等。

项目

会议

  • NeurIPS:https://nips.cc/

  • ICML:https://icml.cc/

  • ICLR:https://iclr.cc/

  • AAAI:https://aaai.org/Conferences/AAAI-19/

  • IJCAI:https://www.ijcai.org/

  • UAI:http://www.auai.org/uai2019/index.php

  • CVPR:http://cvpr2019.thecvf.com/

  • ECCV:https://eccv2018.org/program/main-conference/

  • ICCV:http://iccv2019.thecvf.com/

其他

已标记关键词 清除标记
本课程适合具有一定深度学习基础,希望发展为深度学习计算机视觉方向的算法工程师和研发人员的同学们。 基于深度学习计算机视觉是目前人工智能最活跃的领域,应用非常广泛,如人脸识别和无人驾驶中的机器视觉等。该领域的发展日新月异,网络模型和算法层出不穷。如何快速入门并达到可以从事研发的高度对新手和中级水平的学生而言面临不少的挑战。精心准备的本课程希望帮助大家尽快掌握基于深度学习计算机视觉的基本原理、核心算法和当前的领先技术,从而有望成为深度学习计算机视觉方向的算法工程师和研发人员。 本课程系统全面地讲述基于深度学习计算机视觉技术的原理并进行项目实践。课程涵盖计算机视觉的七大任务,包括图像分类、目标检测、图像分割(语义分割、实例分割、全景分割)、人脸识别、图像描述、图像检索、图像生成(利用生成对抗网络)。本课程注重原理和实践相结合,逐篇深入解读经典和前沿论文70余篇,图文并茂破译算法难点, 使用思维导图梳理技术要点。项目实践使用Keras框架(后端为Tensorflow),学员可快速上手。 通过本课程的学习,学员可把握基于深度学习计算机视觉的技术发展脉络,掌握相关技术原理和算法,有助于开展该领域的研究与开发实战工作。另外,深度学习计算机视觉方向的知识结构及学习建议请参见本人CSDN博客。 本课程提供课程资料的课件PPT(pdf格式)和项目实践代码,方便学员学习和复习。 本课程分为上下两部分,其中上部包含课程的前五章(课程介绍、深度学习基础、图像分类、目标检测、图像分割),下部包含课程的后四章(人脸识别、图像描述、图像检索、图像生成)。
©️2020 CSDN 皮肤主题: 程序猿惹谁了 设计师:白松林 返回首页