- 博客(7)
- 资源 (23)
- 问答 (1)
- 收藏
- 关注
原创 论文阅读笔记:An End-to-End Trainable Neural Network Model with Belief Tracking for Task-Oriented Dialog
我们提出了面向任务的对话系统的新型端到端可训练神经网络模型,该模型能够跟踪对话状态,基于知识(KB)的API调用,并将结构化的KB查询结果合并到系统响应中,从而成功完成面向任务的对话。通过在对话历史上的进行belief tracking和KB结果处理,进而模型产生结构良好的系统响应。我们使用从第二个Dialog State Tracking Challenge(DSTC2)语料库转换而来的数据集在饭店搜索域中评估模型。实验结果表明,在给定对话历史记录的情况下,该模型可以很好地跟踪对话状态。此外,我们的模型在
2020-09-29 10:56:50
73
原创 论文阅读笔记:Recent Advances and Challenges in Task-oriented Dialog Systems
由于在人机交互和自然语言处理中的重要性和价值,面向任务的对话系统在学术界和工业界都受到越来越多的关注。在本文中,我们调查了面向任务的对话系统的最新进展和挑战。我们还讨论了面向任务的对话系统的三个关键主题:(1)提高数据效率以促进在资源匮乏的环境中进行对话建模;(2)为对话策略学习建模多回合模型以实现更好的任务完成性能;(3)将领域本体知识整合到对话模型中。此外,我们回顾了对话评估和一些常用语料库的最新进展。我们认为,尽管这项调查不完整,但可以为面向任务的对话系统的未来研究提供启发。
2020-09-28 21:32:19
136
原创 论文阅读笔记:MultiWOZ 2.2 : A Dialogue Dataset with Additional Annotation Corrections and State...
MultiWOZ是一个著名的面向任务的对话数据集,其中包含10,000多个跨越8个域的带注释对话,而被广泛用作对话状态跟踪的基准。但是,最近的工作报告说,对话状态注释中存在大量噪音。MultiWOZ 2.1中识别并修复了许多错误的注释和用户话语,从而改进了该数据集的版本。本篇论文工作介绍了MultiWOZ 2.2,它是该数据集的又一个改进版本。首先,我们在MultiWOZ 2.1之上的17.3%话语中识别并修复对话状态注释错误。其次,我们通过不允许带有大量可能值的槽(例如,餐厅名称,预订时间)来重新定义数据
2020-09-28 15:17:50
120
1
原创 论文阅读笔记:CrossWOZ: A Large-Scale Chinese Cross-Domain Task-Oriented Dialogue Dataset
为了推进多域(跨域)对话建模并缓解中文面向任务的数据集的不足的问题,我们提出了CrossWOZ,这是第一个大规模的中文跨域“人机交互”任务导向的数据集。CrossWOZ包含 6K 个对话,102K 个句子,涉及 5 个领域(景点、酒店、餐馆、地铁、出租)。此外,语料库包含丰富的对话状态注释,以及用户和系统端的对话行为。大约60%的对话具有跨域用户目标,这些目标有利于域间依赖性,并有助于对话中跨域自然过渡。我们还为pipeline的面向任务的对话系统提供了一个用户模拟器和一些基准模型,这将有助于研究人员在该语
2020-09-27 18:29:43
113
原创 论文阅读笔记:Layer Normalization
训练最新的深度神经网络在计算上是昂贵的,减少训练时间的一种方法是归一化神经元,最近引入的一种称为批归一化的技术使用训练案例的小批量上神经元的总输入分布来计算均值和方差,然后使用均值和方差对每个训练案例中该神经元的总输入进行归一化,这大大减少了前馈神经网络的训练时间。但是,批归一化的效果取决于小批量的大小,如何将其应用于递归神经网络尚不明显。在本文中,我们通过在单个训练案例上计算从层的所有总输入到神经元的归一化的均值和方差,将批归一化转换为层归一化。像批归一化一样,我们还为每个神经元提供了自己的自适应
2020-09-24 22:47:03
81
原创 论文阅读笔记:Attention Is All You Need
序列转导模型基于复杂的递归或卷积神经网络,包括编码器和解码器,表现最佳的模型还通过注意力机制连接编码器和解码器。我们提出了一种新的简单网络架构,即Transformer,它完全基于注意力机制,完全消除了重复和卷积。在两个机器翻译任务上进行的实验表明,这些模型在质量上具有优势,同时具有更高的可并行性,并且所需的训练时间大大减少。我们的模型在WMT 2014英语到德语的翻译任务上达到了28.4 BLEU,比包括集成学习在内的现有最佳结果提高了2 BLEU。在2014年WMT英语到法语翻译任务中,我们的模型在八个
2020-09-17 20:46:39
89
原创 论文阅读笔记:Pretraining Methods for Dialog Context Representation Learning
本文考察了各种用于学习对话上下文表示的无监督预训练目标, 提出了两种新颖的对话上下文编码器预训练方法,并研究了四种方法。使用MultiWoz数据集对每个预训练目标进行了微调,并在一组下游对话任务上进行了评估,并观察到了出色的性能改进。 进一步的评估表明,我们的预训练目标不仅可以带来更好的性能,而且可以带来更好的收敛性,并且模型需要的数据更少,并且具有更好的领域通用性。
2020-09-13 19:57:20
103
1000道 互联网大厂Java工程师面试题(1)(1)(1).pdf
2020-04-03
Eclipse的Properties插件
2018-01-29
JSTL包和standrad包
2018-01-29
java API 1.8
2017-09-19
空空如也
关于vs2010的使用问题,求助
2017-01-21
TA创建的收藏夹 TA关注的收藏夹
TA关注的人 TA的粉丝