- 博客(8)
- 资源 (23)
- 问答 (1)
- 收藏
- 关注
原创 论文阅读笔记:Covariate Shift: A Review and Analysis on Classifiers
我们都知道在机器学习模型中,训练数据和测试数据是不同的阶段,并且,通常是是假定训练数据和测试数据点遵循相同的分布。但是实际上,模型的输入和输出的联合分布在训练数据和测试数据之间是不同的,这称为dataset shift。dataset shift的一种简单情况就是covariate shift,covariate shift仅输入分布发生变化,而在给定输入的输出条件分布保持不变。本文主要概述了现有covariate shift检测和自适应方法及其应用,同时基于包含合成数据和真实数据的四种数据集,提供了各种c
2020-12-29 10:39:38
75
原创 NLP中遇到的各类Attention结构汇总以及代码复现
我们所熟知的encoder和decoder结构中,通常采用RNN结构如GRU或LSTM等,在encoder RNN中将输入语句信息总结到最后一个hidden vector中,并将其作为decoder的初始hidden vector,从而利用decoder的解码成对应的其他语言中的文字。但是这样的结构会出现一些问题,比如老生常谈的长程梯度消失的问题,对于较长的句子很难寄希望于将输入的序列转化为定长的向量而保存所有的有效的信息,所以随着输入序列的长度增加,这种结构的效果就会显著下降。因此这个时候就是Attent
2020-12-26 15:19:33
666
原创 论文阅读笔记:Tacotron和Tacotron2
本文主要是对Tacotron和Tacotron2论文中的关键部分进行阐述和总结,之所以两篇论文放在一起,是因为方便比较模型结构上的不同点,更清晰的了解Tacotron2因为改进了哪些部分,在性能上表现的比Tacotron更好。
2020-12-17 10:20:54
627
原创 利器:TTS Frontend 中英Text-to-Phoneme Converter,附代码
NLP的语音合成中,有一种关键技术是将文字拆解成音素,再去语音库里匹配相同音素的语音片段,来实现文字转换语音。音素是给定语言的语音,如果与另一个音素交换,则会改变单词的含义,同时,音素是绝对的,并不是特定于任何语言,但只能参考特定语言讨论音素。由于音素的特性,非常适合用于语音合成领域。
2020-12-15 16:31:59
97
原创 关于RNN理论和实践的一些总结
本篇文章主要总结我在学习过程中遇到的RNN、其相关变种,并对相关结构进行说明和结构图展示。内容包括RNN、RecNN、多层、双向、RNNCell等等,同时包括在计算框架(TensorFlow及PyTorch)API层面的一些理解记录。本篇文章不进行深入推导和底层原理介绍,仅做总结记录,感兴趣者可自行根据内容详细查阅资料。
2020-12-14 10:40:20
94
原创 论文阅读笔记:Neural Speech Synthesis with Transformer Network
提示:阅读论文时进行相关思想、结构、优缺点,内容进行提炼和记录,论文和相关引用会标明出处。文章目录前言介绍这里科普一下TTS及语音方面的相关知识模型结构前言标题:Neural Speech Synthesis with Transformer Network原文链接:LinkGithub:NLP相关Paper笔记和代码复现说明:阅读论文时进行相关思想、结构、优缺点,内容进行提炼和记录,论文和相关引用会标明出处,引用之处如有侵权,烦请告知删除。转载请注明:DengBoCong介绍虽然像
2020-12-08 17:47:30
65
原创 有必要了解的Subword算法模型
在NLP领域,对语料进行预处理的过程中,我们需要进行分词和生成词典。很多时候用多了框架的API,觉得分词和生成字典就是调用的事情,不过事情并没有那么简单,比如其中涉及到的未登录词的问题,就对任务性能影响很大。一种很朴素的做法就是将未见过的词编码成#UNK ,有时为了不让字典太大,只会把出现频次大于某个阈值的词丢到字典里边,剩下所有的词都统一编码成#UNK 。
2020-12-05 19:48:49
122
原创 论文阅读笔记:Massive Exploration of Neural Machine Translation Architectures
在计算机视觉中通常会在大型超参数空间中进行扫描,但对于NMT模型而言,这样的探索成本过高,从而限制了研究人员完善的架构和超参数选择。更改超参数成本很大,在这篇论文中,展示了以NMT架构超参数为例的首次大规模分析,实验为构建和扩展NMT体系结构带来了新颖的见解和实用建议。本文工作探索NMT架构的常见变体,并了解哪些架构选择最重要,同时展示所有实验的BLEU分数,perplexities,模型大小和收敛时间,包括每个实验多次运行中计算出的方差数。
2020-12-04 23:38:07
62
Eclipse的Properties插件
2018-01-29
JSTL包和standrad包
2018-01-29
1000道 互联网大厂Java工程师面试题(1)(1)(1).pdf
2020-04-03
java API 1.8
2017-09-19
空空如也
关于vs2010的使用问题,求助
2017-01-21
TA创建的收藏夹 TA关注的收藏夹
TA关注的人 TA的粉丝